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The inertial migration of a small rigid sphere translating parallel to the walls within
a channel flow at large channel Reynolds numbers is investigated. The method
of matched asymptotic expansions is used to solve the equations governing the
disturbance flow past a particle at small particle Reynolds number and to evaluate
the lift. Both neutrally and non-neutrally buoyant particles are considered. The wall-
induced inertia is significant in the thin layers near the walls where the lift is close to
that calculated for linear shear flow, bounded by a single wall. In the major portion
of the flow, excluding near-wall layers, the wall effect can be neglected, and the outer
flow past a sphere can be treated as unbounded parabolic shear flow. The effect of
the curvature of the unperturbed velocity profile is significant, and the lift differs from
the values corresponding to a linear shear flow even at large Reynolds numbers.

1. Introduction

A rigid spherical particle translating at small Reynolds number in a shear flow
field experiences a lift. No lateral force can be deduced on the basis of creeping-flow
equations whatever the undisturbed velocity profile (Bretherton 1962). Hence it is
due to the small inertia and wall effect. It results in particle migration across the
streamlines of an undisturbed, laminar flow. Such a motion was first observed by
Segre & Silberberg (1962 a, b) for dilute suspension flow through a pipe. The Reynolds
number based on the pipe width was in the interval from 2 to 700. It was found
that the concentration distribution of neutrally buoyant particles is non-uniform
with maximum concentration being at radial position 0.6 of a pipe radius from the
centreline. Experiments on inertial migration of non-neutrally buoyant particles within
a vertical channel flow were performed by Jeffrey & Pearson (1965) and Eichorn &
Small (1964). They showed that a particle migrates towards the channel walls when
it leads the undisturbed flow, whereas for the case when its velocity is less, migration
in the opposite direction takes place. Vasseur & Cox (1977) measured the migration
velocity of a small sphere sedimenting in a stagnant fluid bounded by a flat vertical
wall. In this case a sphere always migrates away from the wall. Cherukat, McLaughlin
& Graham (1994) investigated inertial migration in a linear shear flow between two
vertical walls.

Theoretical studies of the inertia effect were based on the solution of Navier—
Stokes equations using perturbation methods. At small particle Reynolds number
the disturbance flow to leading order is governed by creeping-flow equations. Even
though the inertial terms are small compared with viscous ones at distances of the
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order of the particle radius, a, from particle centre (inner region), they are of the
same order at sufficiently large distance from the sphere (outer region).

The regular perturbation technique can be used when the distance of the particle
from the wall is small compared with the lengthscale of the outer region, i.e. it is
assumed that the wall lies within the inner region of the flow. Cox & Brenner (1968)
considered the migration of a non-neutrally buoyant sphere translating in a linear
shear flow near a flat wall. They expressed the lift in terms of Green’s functions. Ho
& Leal (1974) studied the migration of a neutrally buoyant sphere in a planar flow
bounded by two flat walls. Vasseur & Cox (1976) and Cox & Hsu (1977) employed
the regular perturbation technique to evaluate the lift in a linear and parabolic
wall-bounded flow.

When the flow is unbounded or the walls lie in the outer region the method of
matched asymptotic expansions is used to solve the Oseen-like equations governing
the disturbance flow and to calculate the lift. Saffman (1965) studied the inertial
migration of a small sphere in an unbounded linear shear flow for the strong shear
limit when the two particle Reynolds numbers, based on the slip velocity, V', and the
shear rate, G, respectively,

Ry =alV'| /v < 1, R = Ga*)v < 1, (1.1)
are assumed to satisfy Ry < Ré/ * In this case the uniform flow in the undisturbed
velocity profile can be neglected. Saffman showed that to the leading order the lift can
be obtained by approximating the sphere by a point force in the outer region. One
need only compute the transverse component of the velocity at the particle centre

and use the Stokes drag law to calculate the lift. The effect of a distant wall for the
strong shear limit was considered by Drew (1988) and Asmolov (1989).

The opposite, weak-shear limiting case, Ry > RY 2, was considered by Vasseur
& Cox (1977). They calculated the migration velocity of a particle sedimenting in
stagnant fluid bounded by one or two plane walls.

Asmolov (1990) and McLaughlin (1991, 1993) independently calculated the lift on
a particle moving in a linear shear flow (unbounded or bounded by a single planar
wall). They removed Saffman’s restriction on the ratio & = Ry /Ré/ ?, characterizing
the relative size of the uniform and linear terms in the undisturbed velocity profile.

The migration within the channel flow for Reynolds number R. = U,,l/v of less
than approximately 100 was investigated for neutrally buoyant (Schonberg & Hinch
1989) and non-neutrally buoyant (Hogg 1994) particles. Here U,, is the maximum
velocity of a channel flow, [ is the channel width. The studies of Schonberg & Hinch
(1989) and Hogg (1994) demonstrate that to leading order the effects of the uniform
flow and the shear may be combined in the governing equations of the outer flow.

Hogg investigated the strong and weak shear limits for a non-neutrally buoyant
sphere. He does not systematically expound the general case, o = O(1), but calculated
the variation of the equilibrium position at R. = 1 for a range of values of o, including
o= 0(1).

The main object of the present paper is to calculate the lift on a small sphere in a
channel flow for large R.. The particle Reynolds numbers R, and R are taken to be
the asymptotically small parameters while the channel Reynolds number is finite. It
is assumed that o = O (1) but there is no relationship between Ry and R, so that R,
remains the same as Ry tends to zero. Cases of both a non-neutrally buoyant particle
translating parallel to the walls with arbitrary o and a neutrally buoyant particle are
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considered. The study fills the gap between the results obtained for a linear shear flow
and channel flow.

The lengthscale of the outer region for the two flows are defined in different ways.
For a linear shear flow the lengthscale based on the local value of the shear rate at
the sphere centre, G,

lg = aR;"? = (v/G)'"?, (1.2)
was used (Saffman 1965; Drew 1988; Asmolov 1989, 1990; McLaughlin 1991, 1993).
For the problem in question G = yU,, /I, where y = 4 — 8d/I is the dimensionless
shear rate at the particle centre, d is the distance between the particle centre and the
nearest wall.
For a sphere translating in a channel flow the particle Reynolds number and the
lengthscale of the outer region based on the average shear rate, U, /I, was introduced
(Schonberg & Hinch 1989; Hogg 1994):

R,=U,d/vl, I, =aR,"? = (vijU;)"* = IR, (1.3)

Two Reynolds numbers and lengthscales introduced by (1.1), (1.2) and (1.3) are related
as

1/2
Ro=iBy o= | 5| =1GR)" =1y

The ratios of the lengthscales I,, I, to | decrease with R. and for large channel
Reynolds number are small compared with the channel width.

For the problem in question approaches using either [, or [ as a lengthscale of the
outer region have some advantages and disadvantages. Since R,, [, do not depend
on particle position the approach based on definitions (1.3) is more convenient to
compare the results calculated for given R. and slip velocity and various particle
positions.

On the other hand, the outer region around the particle at large R, is only a small
portion of the flow, and the lift will depend on the local shear rate rather than its
average value. In order to correlate the results of calculations of the lift in a channel
flow with linear-shear predictions it is useful to scale the disturbance flow in terms
of Rg, lg. The curvature of the undisturbed velocity scaled by I tends to zero as
R, — oo, except very near the centre of the channel, where y ~ 8/R,.. Hence the effects
of both the curvature and of the second far-removed wall (or both walls when d is
large compared with [ Y 2) become small at large channel Reynolds numbers. As
a result one would expect that the lift tends to the value appropriate to the linear
shear flow bounded by a single wall (or to unbounded flow). However, this approach
is inapplicable when the particle is near the centreline of the channel, since we have
G =0 and I; — oo on the centreline.

We present analyses for both approaches. The dimensionless equations and bound-
ary conditions for a small rigid sphere translating parallel to the walls are derived in
§2. In §3, the inner solution valid at a distance comparable with the sphere radius
is constructed for a non-neutrally buoyant particle. Following the approach of Hogg
(1994) the analysis of the outer problem based on the [, lengthscale is developed.
The ordinary differential equation for the Fourier transform of the lateral velocity is
solved numerically using the orthonormalization method.

In §4, the solution of the outer problem based on the I; lengthscale is obtained.
This approach makes it possible to classify more clearly the effects due to the inertia
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in the unbounded flow and the inertial interaction with the walls. The wall effect is
significant in the thin layers, at distances of the order of IR:'? from the walls, where
the lift is close to the values appropriate to the linear shear flow bounded by a single
wall. For the major portion of the channel, excluding these layers, the wall effect can
be neglected, and the disturbance flow can be treated as unbounded. However, the
effect of the curvature of the undisturbed velocity is still sizeable in this part of the
flow even at large channel Reynolds number, and lift depends on two dimensionless
groups characterizing the relative sizes of the uniform, linear and parabolic terms in
the undisturbed velocity profile.

The flow disturbance past a neutrally buoyant particle is due to the shear on the
sphere. This case is considered in §§5 and 6 on the basis of the [, and [ scaling,
respectively, of the outer-flow equations. The wall effect again emerges in the thin
layers near the walls. In the remainder of the channel flow, where the wall-induced
inertia is negligible, the lift is significantly less. For the unbounded case it depends
on the curvature of the undisturbed velocity only. The lift is also evaluated for a
neutrally buoyant sphere in a linear shear flow bounded by a single wall.

The comparison with the experimental results is made in § 7. Finally, the results are
summarized in §8.

2. Governing equations

Consider a rigid sphere of radius a moving parallel to the walls within a plane
Poiseuille flow (figure 1). The origin of the coordinate system is at the centre of the
sphere and translates with the particle velocity U ;, = U,e, where e, is a unit vector
aligned with the x-axis. The particle is at rest in this frame of reference, while the
walls translate with constant velocity. Thus, the flow considered is steady. The particle
slip velocity, introduced by V' = 4U/d(l —d) /I* — U,, is taken to be non-zero in
general. The undisturbed flow is

’ 72
7=V +U (72 —42 )] e. (2.1)
[ 2
Hereinafter a prime is used to denote dimensional velocities and space coordinates.

The equations and boundary conditions governing the disturbance flow (the flow
being the difference between the actual flow and that given by (2.1)) are (Hogg 1994)

u-Vu+v -V +u -V =-Vp/p+vW, (2.2a)
Vu =0, (2.2b)

W=Q Nr'—v on 1 =a, (2.2¢)

W =0 on z=—d [—d, (2.2d)

W —0 as x — oo, (2.2¢)

where ¥’ = (X, y',2'), ' = ||, and € is the rotational velocity of the sphere.
Dimensionless variables are introduced by

r=v'/a, u=u'/U,, Q,=Q1/U,, F=F/uaU,

m?> m> m>
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FIGURE 1. Configuration of the flow and the coordinate system.

where F is a dimensionless force on a sphere. The basic asymptotic parameter in
the problem is defined as € = R,l/ 2. All other dimensionless groups are taken to
be of the order of unity or can be expressed in terms of some power of e. So it
is assumed that V = V'/U, = O(1), d/l = O(1). It should be stressed that even
though we consider large channel Reynolds numbers, R, remains the same as R,
tends to zero. For the ratio of particle size to channel width taking account of (1.3)
we have a/l = (Rp/RL.)l/2 = eR;?
be written as

. The dimensionless undisturbed velocity field can

1=7/U, = (V +eyzR7Y? — 46222R;1) e,. (2.3)
Then equations (2.2) are rewritten in dimensionless form as
eRY?(u-Vu+7v-Vu+u-Vo) = —Vp + Vu, (2.4a)
Veu=0, (2.4D)
u=—"Ve, + ERC_I/2 (QP A r—yzex) + 46222Rc_1ex on r=1, (2.4c¢)
u=0 on z=—e'Rd/l, 'R/ (1—4d/l), (2.4d)
u—>0 as x— oo (2.4e)

For a non-neutrally buoyant spherical particle falling in a vertical channel V' = O(1).
It is seen from (2.4 c) that the disturbance flow is also of the order of unity. The
disturbance is due to the shear on the sphere and particle rotation when |V| < €*/R..
It follows from (2.4 ¢) that u, p = O(e) in this case.

3. Non-neutrally buoyant particle

Much of §§ 3.1, 3.2 follows Schonberg & Hinch (1989) and Hogg (1994). The velocity
and pressure fields and the force on a sphere for the case when V' = O (1) are sought
in the form

u=uy+ eu; + o(e), p =po+epi+ole), F =Fy+¢€F+oe). (3.1)

3.1. The inner solution

The equations for uy, po can be derived by substituting (3.1) into (2.4) and collecting
the terms of power €°. Then the main-order governing equations reduce to creeping-
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flow equations in an unbounded fluid, and one can write

Viuy — Vpy =0, (3.2a)
V-uy=0, (3.2b)
uy=—Ve, on r=1, (3.2¢)
uy—0 as r— oo (3.2d)

It should be noted that boundary condition (3.2 ¢), in contrast to that in Hogg (1994),
contains only the slip velocity. The terms corresponding to the shear rate and particle
angular velocity are of the order of e, and that corresponding to the curvature of
the velocity profile is of order €2. Hence they should be omitted for the main-order
problem. Solution of (3.2) is

3 1 3xr (1 1
ll()——V |:€x <4r+4r3>+4r2 <7'_I”3>:| (33)

This axisymmetric solution gives the drag on the sphere, Fo = 6nV e, and no lateral
force or torque. The lift comes from the second term in the inner solution, so that
F, = eFy,. Collecting the terms of like power of € in the expansion of equations (2.4)
one can derive, taking account of (2.3), the equations for uy, p;:

V2u; — Vp, = RV (ug + Ve,) * Vuy, (3.4a)
Veu =0, (3.4b)
u = R7? (Q,, Ar— yzex) on r=1 (3.4¢)

Note that even to this order the curvature of the velocity profile does not enter into
the inner-flow equations. #; does not decay at infinity, and the boundary condition at
infinity has to be replaced by a matching condition with the outer flow.

The equations (3.4) are linear, and the velocity field can be sought in the following
form:

u =ul +Rul? + V. (3.5)

Here u’ is the solution of the homogeneous part of (3.4a), i.e. of the creeping-flow

equations, satisfying the boundary condition (3.4 ¢), RY 2uf P is the solution of (3.4 a)
withu; =0onr = 1,and ¥V, is a solution of the creeping-flow equations that matches
a uniform flow at infinity and satisfies ¥ =0 on r = 1.

u’ is the same as the main-order solution for a neutrally buoyant particle and is

given by (5.3). For u!'? we have (Proudman & Pearson 1957)

3 3.1 1 1 32\ r
PP 22—t S o) (1= ),
“ 32 K r-i_r2 r3+r4>< r? > r

n 4_§+l_£ xzr_xex
roor ot 3 r '
nb

Because of the symmetry the regular perturbation expansion (the terms #}’ and

RY Zuf Py gives no lift force on a sphere. It comes only from ¥, which is found from
the matching condition.
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The outer spatial coordinates are introduced by the scaling R = (X, Y,Z) = er.
When written in outer variables (3.3) gives

uQZGUS+0(€3),

where

3 e, XR
US__4V<R+R3>'

The Stokeslet velocity field, U,, corresponds to the viscous flow driven by point
force F.

3.2. The outer solution
The outer-region velocity and pressure can be presented as

u=eclU + o(e), p=€P + o(e).

The outer field, U = (Ux, U, UZ), is governed by Oseen-like equations and must
match with Stokeslet velocity. Saffman (1965) showed that for the outer flow the
particle is equivalent in the first approximation to the point force F( being in the
centre of the sphere. The matching condition can be encapsulated into the momentum
equations by the introduction of a delta function. Then the first-order outer equations
and boundary conditions can be written as

oUu dv

2 4Py _
VU —-VP -V, 3x Az U,e, =6nVed(R), (3.6a)
V-U =0, (3.6b)
U=0 on Z=-Rd/l, R(1-d/l), (3.6¢)
U=0 as X — o, (3.6d)

where

Vi=v+9Z —4R7V?Z, v=VR!". (3.7)

The outer problem is characterized by three independent dimensionless parameters:
the channel Reynolds number R., the slip velocity V' (or v) and the distance from the
wall d/I (or y). Hogg (1994) investigated the variation of the lift with R., d/I for two
limiting cases € < v < 1 (strong shear limit) and v > 1 (quiescent fluid) and channel
Reynolds number less than 100. Below, its dependence on R., v, d/l is studied for
large R..

To solve equations (3.6) we introduce the two-dimensional Fourier transforms of
U, P in the plane parallel to the channel walls:

U(XYZ) X1k,
(8- L (23 )

Velocity and pressure fields are then given by the inverse Fourier transform:

U (kv kyo Z) | iteoxh,v)
X VIgk k.
{}//{ ka)}e xSy
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Taking the Fourier transform of (3.6) one can obtain

ik,

~ : -~ dV.~ 3
LU — ik, P —ik V. U— d—Uzex = 2—V5(Z)ex, (3.8a)
d/dz Z m
i (kx Uy +k, ny) +dU./dZ =0, (3.8b)
U=0 on Z=-RYd/l, RV (1-d/l), (3.8¢)
where
d2 2 2 2 2
L= K. KF=k+k.

Eliminating U,, (~Jy,1~’ in (3.8) one can derive the following fourth-order ordinary
differential equation for the Fourier transform of the lateral component of the
velocity:

3 dé(Z)

2 77 i —1/2\ 17 _ . D Gol\4) )
(L ik, VL — 1k 8R; ) U, = —ik,V Az (3.9a)
= dU. _ _ 1/2 1/2
U, = iz - 0 on Z=-—R/d/l, R, (1 —d/l). (3.96)

The term in the right-hand side is equivalent to a jump condition for the second
derivative at the origin of coordinate system, so that

d*U,

o | = ik

(3.10)

%;

where [f] = f (+0) — f (—0) is the magnitude of the jump.
The matching of outer field back to the inner flow requires the inner expansion
(3.5) at r — oo to be the same as the regular part of outer flow at the origin:

V1|r4>oo = [U - US] |R~>0‘

Then the lift on a particle can be expressed in terms of the Fourier transform of the
lateral velocity at the origin as (Saffman 1965)

Fi, = 6nVi.| . =6nRe [ / / V ((72 _ 17) lodks dky] . 3.11)

Here U., is the Fourier transform of the lateral component of the Stokeslet velocity
field.

The equation (3.9) is solved numerically to calculate the Fourier transform of the
lateral velocity at the origin. The numerical procedure is outlined in the Appendix.
The numerical integration of the finite-difference version of (3.9) presents some
difficulty at large channel Reynolds number. The routine numerical technique fails to
converge in this case, since it does not resolve properly all the linearly independent
solutions of the ordinary differential equation. As a result it is possible to calculate
the lift only for channel Reynolds number less than approximately 100 (Schonberg
& Hinch 1989; Hogg 1994). The problem is eliminated in the present work using the
orthonormalization method (Godunov 1961; Conte 1966). This method is widely used
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to solve linear stability problems (see, for example, Mack 1976; Shaqfeh & Acrivos
1987). It allows integrating (3.9) up to k = 128 over the entire interval R.=100-3000.
For greater k the asymptotic approximation (Hogg 1994)
0. (kusky, 0) — Ty (kusky0) = 1 K
(s 0) = Ui (ki 0) = 7V 1o
is used. The numerical integration of (3.11) is done using plane polar coordinates
k, 0 = arccos(k/k) instead of ky,k,. It can be verified directly from (3.9) that
U, (ky,ky, Z) = U: (—ky,ky,Z ) , where the superscript * is used to denote the complex
conjugated value, and U, (kx, ky,Z ) =U, (kx, —ky,Z) . Thus it is sufficient to integrate
(3.11) over the first quadrant.

The lift versus dimensionless distance from the wall d/! is shown in figure 2 by solid
lines for various v and channel Reynolds numbers (a) R. = 100, (b) 300, (¢) 1000,
(d) 3000. Some comments should be made on the applicability of the present analysis
to the channel flow at R. = 3000. The flow is assumed to be laminar although it
may become turbulent at R, > R). ~ 2000. However, R, is the lowest bound for
the laminar—turbulent transition. The critical Reynolds number may be raised if the
perturbations of the flow at the channel inlet are minimized. The theoretical analysis
of the linear-stability problem yields for channel flow R, = 5772 (Orszag 1971).
Besides, the recent investigations by Asmolov & Manuilovich (1997, 1998) show that
a small number of particles may stabilize the gas flow. To calculate the stability
characteristics the effect of the inertial lift force on the momentum transfer between
phases should be taken into account. So the study of the linear stability of dusty-gas
flows is one possible field of application of the present study.

We present results only for the lower half of the channel flow, 0 < d/I < 0.5, since
the dependences are symmetrical with respect to the centreline. For the major portion
of the channel the lift is positive, which means, for example, that if the particle leads
the undisturbed flow and V' < 0, it migrates toward the walls. The maximum value
of the lift increases moderately with R. for the range investigated, 100 < R, < 3000,
while for lower magnitudes, 0.1 < R. < 100, it showed more rapid growth (Hogg
1994).

The lift varies rapidly close to the wall. This is due to the wall-induced inertia
which is significant when the distance from the wall is of the order of the outer-region
lengthscale, [, ~ lRC_l/ 2, which decreases with R., and for greater Reynolds numbers
the wall influence emerges only in thin layers near the walls. It is of interest to
compare the lift in the near-wall regions with the predictions of Cox & Hsu (1977)
and McLaughlin (1993).

Cox & Hsu (1977) considered the sedimentation of a small sphere in a vertical
parabolic flow. The distance from the wall was assumed to be much greater than the
sphere radius and much less than the outer-region lengthscale, that is the wall lies
within the inner region. The particle is also treated as a point force. It follows from
their analysis that the force, written in the present notation, is

9 3d d
Fo=nV|_v+-——(22—105-R'*||. 3.13
o= [ e, (2 o) 613

Asmolov (1989, 1990) and McLaughlin (1993) considered the inertial migration of a
particle translating in a linear shear flow, bounded by a single wall. The distance from
the wall was assumed to be of the order of the lengthscale of the outer region, [z, and
the ratio of the two parts of the undisturbed velocity corresponding to uniform flow

+0(k™) as k— oo, (3.12)
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FIGURE 2. Lift on a non-neutrally buoyant particle versus its position d/I for (a) R. = 100, (b) 300,

(c) 1000, (d) 3000. Parameter v = VR!? changes from —3 to 3 with step 1 (curves 1-7 respectively).
(a) Dashed-and-dotted line represents the lift calculated by Hogg (1994) at €2 < v < 1 (strong
shear limit), R. = 100 (compare with curve 4).

and the shear, « = Ry /R(l;/ 2, of the order of unity. A method similar to that presented

here was used to deduce the outer-flow equations. The analytical solution for the
lift in terms of integrals of Airy functions was obtained. The migration velocity,
v, = Fi,/6m, may be divided into two parts (McLaughlin 1993), so that

u w
U = Uy, T,

Here v, denotes the inertial migration velocity in an unbounded fluid, and v, is the
disturbance created by the wall. The first term depends only on «. The second term,
vy, depends on « and dimensionless distance from the wall, d/l;. McLaughlin (1993)
showed that for distances small compared with [; the results derived for linear shear

flow reduce to those of Cox & Hsu (1977).
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FIGURE 3. Lift on a non-neutrally buoyant particle versus d/I, (solid lines) for €2 < v < 1 (strong
shear regime) in comparison with that calculated by Cox & Hsu (1977) (dashed lines) and by
McLaughlin (1993) (dashed-and-dotted line). Curves 1-4 correspond to R, = 100, 300, 1000, 3000.

The results of the present work must also reduce to (3.13) for d/I, < 1 since the
inertial terms in (3.6 a) are again small compared with the viscous ones. Moreover,
at large channel Reynolds number and d/l, = O(1) they must tend to the values
appropriate to the linear shear flow, since effects due to both the second far-removed
wall and the curvature of undisturbed velocity profile (the last term in (3.7)) become
negligible as R, — co. In order to illustrate this effect the lift for a strong shear regime
is presented in figure 3 as a function of distance from the wall scaled by [,. For
comparison the results of Cox & Hsu (1977) and McLaughlin (1993) are also plotted.
The lift in the near-wall regions converges to the linear-shear predictions at large
Reynolds numbers, and to the Cox-Hsu theory for small d/I,. However, the deviation
grows with d/I, and remains sizeable even for R, = 3000. It cannot be explained by
the wall effect, since the wall-induced inertia decreases with the distance from the
wall, but only by the curvature of the undisturbed velocity profile.

Following the approach of McLaughlin (1993) the lift on a sphere in a channel flow
can also be presented as the sum of the lift in unbounded parabolic flow, Fy,, and
the disturbance created by the wall, F},. Such a breakdown is rather unconventional,
since an unbounded parabolic velocity profile cannot be realized, but it permits the
separation of the effects due to the curvature of the undisturbed velocity profile and
the wall-induced inertia. It follows from the above comparison of channel-flow and
linear-shear migration that the wall contributions for the two cases are close, while
the unbounded lift forces are different even at large channel Reynolds number. Note
that for a major portion of the channel flow, excluding thin layers near the walls, the
distance from the wall is large compared with [,. In this region the wall effect is small,
and the lift is close to Fy',. This limit can be demonstrated more clearly if one uses I
to scale the outer-flow equations. The analysis based on this scaling is developed in
the next section.

The lift always vanishes at the channel centre because of the symmetry of the flow.
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FIGURE 4. The equilibrium position nearest to the wall, d., /I, versus v. Curves 1-5 correspond to
R. =1, 100, 300, 1000, 3000. The dashed lines are the predictions of Cox—Hsu theory, following
from (3.13). The dashed-and-dotted line presents the results of Hogg (1994) for R, = 1.

For a particle leading the undisturbed flow, when V' < 0, this equilibrium position is
unstable, while for V' > 0 it is stable. The particle has a stable equilibrium position
near the wall for v < 0. The equilibrium position nearest to the wall, d,,, scaled by
l, is presented in figure 4 as a function of v. The slip velocity for which the lift
vanishes at given d,, is evaluated using the Newton method. Hogg (1994) calculated
the variation of d,, for R. = 1. He showed that the equilibrium position exists for
limited range of slip velocity, vy, < v < 0, where vy, & —0.50. We recalculate these
results and obtain slightly greater values of minimum slip velocity, vy, & —0.56. For
large channel Reynolds numbers the equilibrium position occurs within more wide
range of v. For —2 < v < 0 it may be predicted well by Cox & Hsu’s (1977) theory.
Extra equilibrium positions across the channel width may arise for large |v|. The
lift at v = 8, —8 and various R, is presented as a function of d/I in figure 5. Two
additional equilibrium positions arise at v = +8, R. = 3000 and v = 8, R. = 1000.
Note that the magnitude of the lift at large slip velocity is many times smaller than
that for v = O (1). This effect was pointed out by McLaughlin (1991) for unbounded
linear shear flow. For o > 1 the lengthscale of the region where the convective terms
balance the viscous ones is the Oseen length, I = v/V' < [,. In this region the term
involving v is larger than the other convective terms, and the disturbance flow is close
to axisymmetric Oseen flow. This gives no lift on a sphere. The shear convective term
becomes of the same order as the uniform one at distances of order [,/o where the
disturbance flow is very small. As a result the lift rapidly decreases as o — oo.
Similar reasoning may be applied for a particle translating with large slip velocity
in a channel flow. The numerical calculations show that the main contribution to
the lateral velocity at the origin at high slip velocities comes from the small values
of k. This means that the lift is due to the flow disturbances with the characteristic
length, 1,/ |v|, large compared even with [,. For such disturbances the wall effect
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FIGURE 5. Lift on a non-neutrally buoyant particle at large |v| and R. = 100, 300, 1000, 3000 (curves
1-4 respectively). (a) For v = 8 one (curves 1, 2) or three (curves 3, 4) equilibrium positions may
exist. (b) For v = —8 the dependences may have two (curves 1-3) or four zeros (curve 4).

remains sizeable, and this may explain the emerging of extra equilibrium positions
with increasing channel Reynolds numbers.

4. Solution for non-neutrally buoyant particle based on the [; lengthscale
The velocity and pressure fields and the force on a sphere are sought again in the
form of series in a small parameter, but instead of € a new asymptotic parameter

€g = Ré/z = y1/2¢ is used. The dimensionless force on a sphere is F = 6nVe, + ecF.
The dimensionless undisturbed velocity can be rewritten in terms of € as

V= (V + zegy/*R71V? — 42262G'))71R;1) ey. 4.1)

The new outer normal coordinate is defined as { = zeg = Zy'/2. The two-dimensional
Fourier transforms of velocity, I' ({,4x.qy), and pressure, IT ({, gy, qy), are introduced
similarly to (3.8). As a result one can obtain the following equation for the Fourier
transform I, of the lateral component of the velocity:

- . . 3.ds
(LZG - quVGxLG - quzﬁ) Fz = _quvznd(;), (42@)
r.= ddlgz =0 on (=—"?R2d/l, 'R (1—-d/l). (4.2b)

Here L =d?/d{?> — ¢?, and Vg, is the undisturbed velocity profile written in terms
of {. In view of (4.1) it is given by

Vo =0a+(—0cl’
where
a=V (vG) V2 =Vy 12RI2 G =4yT2R712, (4.3)

The equations (4.2) are very similar to (3.9). The main difference is that V 6« contains
only two dimensionless groups instead of the three occurring in V. The third
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group, R., occurs only in the boundary conditions (4.2b). R., a, ¢ are taken as the
main independent parameters characterizing the inertial migration in terms of the I
lengthscale. Other groups, y and the distance from the wall, in view of (4.3), can be
expressed in terms of the main ones as

p= (e R g R (44ab)
Ii = (40'R)" %— é (40~ R71V2)*| (4.4c)

New dimensionless groups, « and o, characterize the magnitudes of the uniform and
parabolic flows relative to the linear one in the undisturbed velocity. The first group,
o, may be arbitrary. For the second one we have from (4.3) ¢ > R 2/ 2, since 7y
reaches its maximum value, y,, = 4, on the wall. « and ¢ tend to infinity as the particle
moves to the centreline where y — 0. The magnitude of ¢ characterizes for given R,
not only the curvature of the undisturbed velocity profile but also the distance from
the wall. For this reason one can expect that the lift calculated at different R, would
be close in value for sufficiently large ¢ when the wall effect becomes insignificant.

The numerical procedure used to calculate the lateral velocity at the origin is similar
to that described in §3. In figure 6 the lift coefficient, introduced by ¢; = Fg./V, is
presented as a function of ¢. For comparison the lift force in the linear-shear flow
bounded by a single wall (McLaughlin 1993) and their asymptotes corresponding
to the unbounded case (Asmolov 1990; McLaughlin 1991) are also shown in the
figure by dashed-and-dotted and dashed lines respectively. In this case ¢ is treated as
characterizing only the distance from the wall. The dependence on d/ls is converted
to o-dependences for different R. using (4.4).

It is seen that for small ¢ the lift is close to that in the linear-shear flow. In
this region the wall effect is dominant. For greater ¢ or, equivalently, for greater
distance from the wall the wall-induced inertia is insignificant, and the dependences
obtained for various R, are very close. They tend to the values which correspond
to the lift coefficient in the unbounded parabolic flow, ¢!, which differs from that in
the unbounded linear-shear flow (dashed line) even when the curvature is sufficiently
small, ¢ < 0.1. ¢¥ is a function of only two dimensionless groups o, o, instead of the
three, R., v, 7, used above.

4.1. Lift in unbounded parabolic flow

The Fourier transform I'* of the lateral component of the velocity for the unbounded
problem is governed by (4.2 a) with the boundary conditions

r:—0 as (- oo (4.5)

To obtain the numerical solution in this case the modification of orthonormalization
method proposed by Mack (1976) is used. The boundaries of the integration domain
are set at sufficiently large distance |{| from the sphere where the analytical expressions
for linearly independent solutions ¢;({), i = 1-4 can be found. Assuming ¢; =
exp (4;(|") one can obtain for two solutions decaying with |{]|

@1 =exp (—qll), @2 =exp (—(iog.)'??/2)  as (-0, ¢=0(1),

where the branch of (i)!/? is chosen with a positive real part.
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FIGURE 6. Lift coefficient as a function of ¢ for (a) o = —2.5, (b) € € o € 1, (¢) a = 2.5, and
R, = 100, 300, 1000, 3000 (curves 14 respectively). Symbols on the curves correspond to the particle
position (from left to right) d/I =0, 0.05, 0.1, 0.15,... . The dashed-and-dotted lines are the lift in
the linear shear flow bounded by a single wall (McLaughlin 1993), and the dashed lines are their
asymptotes corresponding to the unbounded case (Asmolov 1990; McLaughlin 1991).

The calculations of the lift coefficient in unbounded parabolic flow, c¥, for the
case ¢ = 0 which corresponds to linear shear flow, show very close agreement with
predictions by Asmolov (1990) and McLaughlin (1991).

Figure 7 shows the dependence of ¢! on a for various ¢. The maximum value of
the lift in the parabolic flow is less than that in the linear shear case and reduces
with . However, for large magnitudes of the slip velocity the reverse situation takes
place, and the lift in the unbounded parabolic flow is many times greater than that
for the linear shear case. As a result the lift decay with || is not so rapid as for the
linear shear. The values of c¥ are given in table 1 for several values of a.
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FIGURE 7. Lift coefficient for a non-neutrally buoyant particle in unbounded parabolic flow versus
o and various ¢ = 0.05, 0.1, 0.2, 0.5, 1, 2 (curves 1-6 respectively). Dashed line represents the lift
in unbounded linear shear flow (Asmolov 1990; McLaughlin 1991), ¢ = 0.

o c=00 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1.0 2.0 4.0

—4.0 0.082 0170 0.289 0.379 0434 0460 0477 0.504 0.530 0.557 0.470
=35 0242 0194 0362 0479 0.537 0.564 0.580 0.603 0.626 0.640 0.526
—3.0 0557 0267 0482 0.619 0.677 0.701 0716 0.727 0.746 0.739 0.591
—-25 1124 0526 0.692 0.821 0.870 0.885 0.894 0.886 0.896 0.858 0.665
—2.0 2039 1155 1042 1.118 1.141 1.136 1.131 1.089 1.082 0995 0.749
—1.5 3309 2289 1.724 1578 1.527 1478 1445 1348 1312 1.146 0.843
—1.0 4744 3768 2879 2272 2068 1938 1854 1.671 1592 1344 0.947
—0.5 5949 5171 4260 3227 2781 2525 2365 2058 1909 1.552 1.059
00 6462 5991 5308 4223 3576 3.185 2938 2485 2261 1.771 1175
0.5 5949 5919 5578 4.817 4193 3750 3453 2890 2615 1986 1.292
1.0 4744 5072 5.057 4743 4351 3999 3.732 3.172 2876 2.172 1399
1.5 3309 3843 4.066 4.126 4.005 3.827 3.668 3.237 2984 2299 1.489
20 2039 2630 2982 3249 3343 3331 3294 3.063 2900 2341 1.550
25 1124 1.656 2.042 2411 2600 2.695 2740 2707 2.651 2290 1.574
3.0 0557 0989 1339 1.694 1931 2076 2170 2269 2307 2141 1.558
35 0242 0571 0.856 1.163 1397 1.551 1.661 1.831 1943 1943 1.503
40 0.082 0323 0.539 0.788 1.001 1.142 1247 1443 1599 1.702 1415

TaBLE 1. Lift coefficient ¢! for a non-neutrally buoyant particle in unbounded parabolic flow.

5. Neutrally buoyant particle

The approach used in this section to derive the outer-flow governing equations
is similar to the analysis of Schonberg & Hinch (1989). The difference is that we
use € = R;/z as the main asymptotic parameter instead of a/l = R;/zRfl/z. For the
neutrally buoyant sphere, when |V | < €?/R., the flow disturbance is due to the shear

on the sphere. The expansions for # and p can be presented as

u=eul + o(e), p = ep + o(e). (5.1)
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Governing equations for the main-order inner solution remain the creeping-flow
equations (3.2 a,b) while the boundary conditions in this case are

ult=R-1/? (Q Ar— yzek) on r=1, (5.2a)

u’ -0 as r— o (5.2b)
Note that the main-order boundary conditions are independent of the curvature of
the undisturbed velocity profile. Solution of (3.2 a,b), (5.2a,b) is given by

i Y r 5 ) 1 Y
=R [(Qp + 5ey) A e + FVrxz (”7 — %) 733 (exz +e.x)| . (5.3)

This velocity field results in a couple on the sphere 8nR./? (Qp +eyy /2) but no
force. Since there is no torque on the sphere we have for the particle angular velocity
2, = —e;7/2, and the first term in square brackets in (5.3) equals zero.

When written in outer variables (5.3) gives for torque-free particle

5 YRXZ
utt — _ 22 gt s
0 27 B’
The main-order term in the last expansion is the strainlet velocity field. It corresponds
to viscous flow driven by a symmetric force dipole.

The outer-region velocity and pressure fields in view of (5.1) and (5.4) are presented
as

+ 0(e*). (5.4)

u=eU+o(e), p=€*P + o(e).

Following Saffman (1965) and Schonberg & Hinch (1989), the matching condition
can be encapsulated into the momentum equations by the introduction of singularity
corresponding to the symmetric force dipole. Then the equations governing the outer
flow are
oUu  dv, 10

We, yR_l/2 { ey

2
V-U—-VP — V@X 7 3

0 (R) , 0 (R)}

oz % Tax (53)

together with the equation of continuity and boundary conditions (3.6 ¢,d). Note that
in (55) V. = yZ —4R."*Z? since in this case V = 0. The system obtained can be
reduced to the following fourth-order ordinary equation for the Fourier transform of
the lateral velocity:

d25(2)
dz2

(L? — ik, VL — ik, 8R;*) U, = ity RS2 [

+ kzé(Z)} , (5.6)
67

with the boundary conditions (3.9b). The term in the right-hand side is equivalent to
the jump conditions for the first and third derivatives at the origin of the coordinate
system, so that

. 5

2| =k RV2

dz iy R, 61’
U — dU 5 5
2 = [2k? + ik V 2| +ik kP RIV?— =ik kPRI .
R [ k” + ik, X(O)] l iz + ik kYR, = ikyk“yR; o
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FiGure 8. Lift on a neutrally buoyant particle for R, = 15, 100, 300, 1000, 3000 (curves 1-5).
Dashed-and-dotted line is the lift evaluated by Schonberg & Hinch (1989) for R. = 15, and dashed
line represents the predictions of Vasseur—Cox (1976) theory.

Since the Fourier transform of the lateral component of the strainlet velocity field is
purely imaginary, the lift on a particle can be expressed as

FZ=6ne3Re[/v/vl~]z

The lateral velocity at the origin is evaluated using the same numerical procedure as
that described in § 3. To approximate U, at large Fourier mode number the asymptotic
approach based on (A 3) is used. It yields for a neutrally buoyant sphere
- 1512
Re U. (ky,ky,0) = 9R; lgﬁ
The results are shown in figure 8. The lift on a neutrally buoyant particle is
presented as a function of particle position in the channel, d/I, for various Reynolds
numbers, 15 < R, < 3000. For R. = 15 the lift is in good agreement with that
calculated by Schonberg & Hinch (1989) and close to the Vasseur—Cox prediction
obtained under the assumption R. < 1, when the walls lie within the inner region. It
can be seen again that at large Reynolds numbers the wall effect emerges in a thin
layer near the wall. In the remainder of the channel flow, where the wall influence is
negligible, the magnitude of the lift is significantly less and decreases with Reynolds
number.
The equilibrium position of a neutrally buoyant sphere, d,/I,, versus R, is presented
in figure 9. The Reynolds number for which the lift vanishes at given d,, is evaluated
using the Newton method.

dk, dky} .

Z-0

+0(k™) as k— oo

6. Solution for a neutrally buoyant particle via the /; lengthscale

In order to separate the effects of the curvature of the unperturbed velocity profile
and wall-induced inertia the outer flow past a neutrally buoyant sphere is considered
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FIGURE 9. The equilibrium position of a neutrally buoyant particle versus the channel Reynolds
number in comparison with experimental results of Segré & Silberberg (1962) (+) and extrapolation
of Schonberg & Hinch (1989) from the partial profile of migration velocity (O).

in terms of the local shear rate, G. The disturbance velocity is scaled by Uy = (vG)'/?
instead of U,,, and the space coordinates by /. The main-order dimensionless force

on a sphere is F, = ec¢.pe,. Hence, the dimensional force is expressed in terms of lift
coefficient, ¢, as

F' = pG*a*cppe..

6.1. Channel flow

Similarly to (5.6) one can obtain the following equation governing the Fourier trans-
form I', of the lateral velocity:

(LZG - quVGxLG — 1qx20') FZ = qua |: dC(f)
The boundary conditions for (6.1) are (4.2b), and the unperturbed velocity is given

by

+fao} (6.1)

Vor={—al% (6.2)

The dependence of the lift coefficient on the curvature, calculated for various Reynolds
numbers and presented in figure 10, is very similar to the non-neutrally buoyant case.
It also converges, to the limiting dependence, ck,, corresponding to the unbounded
parabolic flow. As the uniform flow in the unperturbed velocity profile is zero for the
neutrally buoyant particle (see equation (6.2)), i, depends on only one dimensionless
group, namely, o.

To evaluate the lift in unbounded parabolic flow we solve the equation (6.1) together
with the boundary conditions (4.5). The numerical procedure used to calculate c, is
the same as that described in § 4.1. Figure 11 shows the lift on a neutrally buoyant
sphere in unbounded flow versus ¢. The magnitude of the lift grows monotonically
with . It equals zero at ¢ = 0 (unbounded linear-shear flow) because of the symmetry
of the flow.

6.2. Linear-shear flow bounded by a single wall (¢ = 0)

The lift on a neutrally buoyant sphere in linear shear flow (¢ = 0) results from the
wall effect only. The Fourier transform of the lateral velocity again satisfies equation
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Ficure 10. Lift coefficient for a neutrally buoyant particle as a function of ¢ for R, = 100, 300,
1000, 3000 (curves 1-4 respectively). Symbols on the curves correspond to the particle position
(from left to right) d/I = 0.05, 0.1, 0.15,....
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FiGure 11. Lift coefficient for a neutrally buoyant particle in unbounded parabolic flow.

(6.1) with the undisturbed velocity, V¢, = {. The boundary conditions in this case are
ro— dr,
d¢

I'.—-0 as (— +oo.

=0 on (=-(,<0,

Here (,, is the dimensionless distance from the wall.

The upper boundary of the integration domain is set similarly to §4.1 at sufficiently
large { where the analytical expressions for linearly independent solutions ¢;({),
i = 1-4 can be found. Assuming that ¢; = exp (4;,{"") one can obtain for the decaying
solutions:

@1 =exp(—q{), @2 =exp (—3(ig)'/2*?) as (- 4o, ¢ =0(1),

where the branch of i'/? is chosen with a positive real part.

The ¢,» dependence on {,, is presented in figure 12. The lift is positive for all {,,, i.e.
the particle always migrates outward from the wall. There is no equilibrium position
for a neutrally buoyant particle in a linear shear flow bounded by a single wall.
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FiGURe 12. Lift coefficient for a neutrally buoyant particle in a linear shear flow bounded by a
single wall.

7. Comparison with experiments

The results of two experimental investigations (Segré & Silberberg 1962 b; Jeffrey
& Pearson 1965) relevant to those of present work are compared with the theoretical
predictions. Jeffrey & Pearson (1965) studied the migration of dense particles in
upward and downward Poiseuille flow in a vertical pipe with Reynolds number R.
varied from 42 to 230. The particle Reynolds number, R,, was in the range from
0.02 to 0.5. Hogg (1994) compared two sets of experimental data for downward flow
with R, = 90.6, v = 0.379 and R. = 178, v = 0.27. However, he did not describe
in detail how the effect of uniform flow was taken into account in the outer-flow
equations. We recalculate the lift for the same values of dimensionless groups, R, v.
The results are presented in figure 13 (a). The dependences differ significantly from
those calculated by Hogg. However, all theoretical predictions agree only qualitatively
with experimental values.

Schonberg & Hinch (1989) compared the equilibrium positions for neutrally buoy-
ant particles evaluated theoretically with the experimental data of Segré & Silberberg
(1962 b). Very good agreement was demonstrated for channel Reynolds numbers
less than 75. For R. = 150 the equilibrium positions were found approximately by
extrapolating the partial profile of migration velocity.

We compare not only the equilibrium positions for a neutrally buoyant particle
at large channel Reynolds number, but also the value of the lift. The calculated
equilibrium positions are very close both to experimental (Segré & Silberberg 1962 b)
and theoretical (Schonberg & Hinch 1989) results for R. < 100 (see figure 10). For
larger Reynolds numbers they deviate from experimental results. However, agreement
with the experiments is better than the extrapolation of the partial profile of the lift
that Schonberg & Hinch gave for R. = 150.

The comparison of the lift on neutrally buoyant particle versus particle position
between theoretical predictions of the present work and experimental results of Segrée
& Silberberg (1962 b) is illustrated in figure 13 (b). They agree well except for the
particles near the centreline.

Two possible reasons for the discrepancy between theoretical and experimental
results were pointed out by Schonberg & Hinch (1989) and Hogg (1994). First, it may
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FiGURE 13. Comparison of theoretical predictions of the lift on (a) non-neutrally buoyant and
(b) neutrally buoyant particles with experimental results. (a) R, = 90.6, v = 0.379 (+,— — —);
R. =178, v =0.27 (O, —). Heavy lines are the predictions of the present work, thin lines are those
of Hogg (1994) and symbols are experimental results of Jeffrey & Pearson (1965). (b) R. = 39.2
A,—-+—); R, =676 (0,— -—); R. =104.6 (©,—); R. = 144.4 (+,— — —). Lines are predictions
of the present work and symbols are experimental results of Segre and Silberberg (1962).

be due to the difference in geometry: the experiments were conducted in cylindrical
tubes while the calculations were for a plane channel. The second reason is that, for
large tube Reynolds numbers the particle Reynolds number, R, is not small. So for
the experiments performed by Segré & Silberberg (1962 b) at tube Reynolds numbers
116, 232 and 346 one can estimate R, as 0.34, 0.68 and 1.00 respectively. This may
explain why the trend of the predicted equilibrium positions for neutrally buoyant
particles with increasing R. is not the same as the experimental data.

One more reason for poor agreement of theoretical and experimental results may be
indicated for the non-neutrally buoyant particles. We compare in figure 13 (a) the lift
on a particle divided by the slip velocity, V. However, the latter was not measured in
the experiments. Jeffrey & Pearson (1965) assumed that the slip velocity is equal to the
Stokes free-fall velocity, V. The same value is taken in our calculations. Nevertheless,
they pointed out that even the axial velocities of the particles, U,, hardly can be
measured with sufficient accuracy. It would be expected that the difference between
the real slip velocity, V' and Vg was even greater. The wide scatter of experimental
data supports this conclusion.

8. Conclusions

The inertial migration of a rigid spherical particle translating parallel to the walls
within a channel flow has been considered for large channel Reynolds numbers.
Matched asymptotic expansions have been used to solve the Oseen-like equations
governing the disturbance flow past neutrally or non-neutrally buoyant particles.
Solutions of the outer-flow problem with the scaling based on the mean and local
shear rates have been constructed. The problem has been reduced to a fourth-order
ordinary differential equation for the Fourier transform of lateral velocity.

Within the framework of the approach based on [,-scaling the non-dimensional lift
on a non-neutrally buoyant sphere is characterized by three dimensionless groups:
channel Reynolds number, distance from the wall and slip velocity. The dependence on
all parameters has been evaluated numerically using the orthonormalization method.
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The scaling based on the local shear rate enables the separation of the effects due
to the inertia in the unbounded parabolic flow and the inertial interaction with the
walls. The wall effect should be taken into account at distances of the order of IR "/*
from the wall. In the near-wall layers the lift is close to values corresponding to the
linear shear flow, bounded by a single wall. In the remainder of the channel flow
the wall effect is negligible, and the outer flow past a sphere can be treated as an
unbounded parabolic flow. In this region the lift depends on only two dimensionless
groups characterizing the relative sizes of the uniform, linear and parabolic terms in
the undisturbed velocity.

The effect of the curvature of the unperturbed velocity profile is significant, and
the lift differs from the values corresponding to a linear shear flow even at large
Reynolds numbers. The maximum value of the lift in the unbounded parabolic flow
is less than that in the linear shear case while for large magnitudes of the slip velocity
the lift in the unbounded parabolic flow is many times greater than the linear-shear
predictions.

The inertial migration of a neutrally buoyant particle has been considered for
channel flow and linear shear flow bounded by a single wall. For the channel flow
the wall effect again emerges in the thin layers near the walls. In the major portion
of the flow, where wall-induced inertia is negligible, the lift is significantly less. The
behaviour of the lift as a function of curvature is very similar to the non-neutrally
buoyant case. The dependences evaluated for different channel Reynolds numbers
converge to the limiting dependence, which corresponds to the unbounded parabolic
flow. The lift in unbounded flow depends only on the curvature of the undisturbed
flow. The lift on a neutrally buoyant sphere in a linear shear flow bounded by a
single wall is positive for all distances from the wall, i.e. the particle always migrates
outward from the wall.

The lift vanishes on the axis of the channel because of the symmetry of the
disturbance flow. There exists at least one more equilibrium position for a negative
slip velocity and for a neutrally buoyant particle. The equilibrium position nearest
to the wall has been evaluated numerically. For small slip velocity the equilibrium
position scaled by [, is almost the same for different Reynolds numbers. For a
neutrally buoyant particle this distance grows with the Reynolds number. At large
slip velocities (both negative and positive) additional equilibrium positions arise.

The comparison with the experimental results shows only qualitative agreement
for the non-neutrally buoyant particles. The predictions of the lift and equilibrium
position for the neutrally buoyant particles agree better with the experimental data.
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Appendix
_In this Appendix a short overview of the numerical procedure used to calculate
U. (kx,ky,0) is given. First we define

_(, do &0 d’
P=\P a4z Az )
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The fourth-order ordinary differential equation has four linearly independent solutions
¢;, i = 1-4. They may be introduced for Z < 0 as

@; =(1,0,0,0), ¢; =(0,1,0,0), @3 = (0,0,1,0), ¢; =(0,0,0,1) on Z = —R;"*d/!I.
(A1)

These solutions provide the initial conditions for the numerical integration. Two of
them, @3 and ¢, satisfy the boundary conditions (3.9 b). Hence an arbitrary solution
of (3.9a) for Z < 0 satisfying (3.9 b) may be sought as

U.=c;9; +c;0; for Z <0.
The initial values for the solutions at Z > 0, ¢, i = 1-4, are introduced on

7 = R!? (1 —d/ l) similarly to (A 1). The arbitrary solution satisfying the boundary
conditions on the upper wall is

U.=clol +cfof for Z>0.

Thus, it is necessary to integrate numerically only two solutions. Starting with the
above initial conditions, we integrate @3, ¢; upward and ¢3, ¢; downward to
Z =0.

Four unknown constants c3, ¢;, ¢5, ¢f are then determined by the conditions at
Z = 0. In view of (3.10) they can be written for a non-neutrally buoyant particle as

oy dey/dZ  de3/dz? dley/dZP\  fcy 0

REENAT A ATy I B I (A2)
—p; —do3/dZ —d@7/dZ° —d’¢3/dZ- c —ik,V3/2n

—pi —de;/dZ —d*p;/dZ? —dPg;/dZ3) \ci 0

One can derive another set of linearly independent solutions of (3.9 a) at large k.
The second and third terms in brackets in (3.9 a) can be neglected when k tends to
infinity. As a result one can readily obtain

pr=ec¢*, Gy=Ze, p3=¢“, G,=2Ze% as k—o o, Z=0(). (A3)

Two of solutions, @; and @,, exponentially grow while two others, @3 and @y,
exponentially decay at Z < 0, and vice versa at Z > 0.

One should keep all the linearly independent solutions to find from (A 2) the con-
stants c3, ¢z, ¢5, ¢f with the accuracy required. However, at large R, this requirement
hardly can be fulfilled even for not-too-large k. The reason is that the channel width,
when expressed in terms of the lengthscale of the outer region, grows with R, (see
(3.9b)), ie. the channel boundaries are too far from the particle in this case. The
routine numerical technique does not permit the decaying solution to be resolved
properly when the path of integration is large. As a result any numerical solution will
be the superposition of growing solutions only, whatever its initial value.

This problem is eliminated using the orthonormalization method (Godunov 1961;
Conte 1966). When the ratio of magnitudes of different linearly independent solutions
becomes large, the Gram—Schmidt orthonormalization procedure is used to construct
the new set of linearly independent solutions.

Mack (1976) modified this technique for the case when the problem is unbounded,
and the boundary conditions (3.9 b) on the wall should be replaced by the vanishing
condition for the disturbance flow at infinity. In this case the integration starts at
sufficiently large distance where the analytical expressions for the linearly independent
solutions can be obtained. A similar approach is used in the present work to evaluate
I'- (gx.4y,0) for unbounded flow or the flow bounded by a single wall (see §§4.1, 6.1).
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